Logical reasoning:	Symbols	Definition/Example
Conditional statement if - then	p -> 9	Statement that can be written as an if-then statement
Hypothesis(p)	P	Part "p" of a conditional statement following the if
Conclusion (q)	9	Part "q" of the conditional following the <u>then</u>
Converse	97P	Statement formed by <u>flipping</u> the hypothesis and conclusion
Negates Negates	~p-7~9	Statement formed <u>Negating</u> the hypothesis and conclusion
Contrapositive Flips and pages	~9-7~p	Statement formed by both exchanging and negating the hypothesis and conclusion
Biconditional Definitions, Rulestonditional and the ust both be true	converse	Statement that can be written in the form if and only if (iff) (this means "if p then q" and "if q then p")
Negation	Not (~)	Negation of a statement p is "not p" (Negation of a true statement is false and of a false statement is true)
Counterexample		An <u>statements</u> , <u>example</u> that proves a statement false

		30
Logical Reasoning		· · · · · · · · · · · · · · · · · · ·
Symbol	Example 1:	Example 2:
	Tom lives in Mansfield Texas	Parallel lines do not intersect.
Conditional b -7 q	If Tom lives in Mansfield	(p-79)
Statement	though line in Toxac	If lines are parallel, then they
if-then	then he lives in Taxas.	If lines are parallel, then they do Not intersect. (T)
Hypothesis p (if)	Conclusion 9 (then)	Hypothesis P (if) Conclusion 9 (then)
Tom lives in Mansfield	he lives in Texas.	lines are parallel they do not intersect.
Converse	If Tom lives in Toxas,	(9-7p) If lines do Not intersect, then they
FLIP	then he lives in Mansfield.	are parallel. (T)
Inverse ~p-7~9	If Tom does not live in Mansfield, then he does	(~p->~q)
Negates 19-729	Mansfield, then he ales Not live in Texas.	If lines are not parallel, then they intersect.
Contrapositive	If TOM does not live in	(~q →~p)
Flight orders rad-up	Texas, then he does Not live in Mansfield.	If lines intersect, then they are not parallel.
Biconditional pega Statement Conditional and its	Counterexample:	Biconditional Statement: p +79 (if and only if)
counterexample	He lives in Mansfield, OH	Lines are parallel if and only if they do Not intersect.
		if they do Not intersect.