2 column proof Flow CHART proofs paragraph

2.5 Notes Algebraic Proofs:

Euclidean geometry is one of the first mathematical fields where results require proofs rather than calculations. Proof-writing is the standard way mathematicians communicate what results are true and why. The entire field is built from Euclid's postulates.

*A <u>broof</u> is an argument that uses <u>postulates</u>, <u>theorems</u> definitions, and previously proven statements to show that a <u>conjecture</u> is true. (Statement)

*A TWO _- column proof has statements in the left column and reasons in the right column. Each reason is the explanation for the corresponding statement. (justifications)

An important part of writing a proof is giving justifications to show that every step is valid.

Example 1: Given 5x - 3 = 4(x + 2)Prove: x = 11

Statements	s Reasons
5x-3=4(x+2)	Given national opening a sting of signing
5x-3=4x+8	Distributive POE
x-3=8	Subtraction POE
x = 1)	Addition POE

DIAGRAM is PART OF MY given

Example 2: Given: NM = 2x, MO = 3x - 9, NO = 4x - 4

Prove: x = 5

├ 4		- 4	→	
**		-	>	
N	2x	M 3x -	9 0	

Statements	Reasons
NM = 2x, $MO = 3x - 9$, $NO = 4x - 4$	Given
NM + MO = NO	Segment Addition Postulate
2x + 3x - 9 = 4x - 4	Substitution POE
5x-9 = 4x-4	C.L.T.
x-9=-4	Subtraction POE
x=5 .	Addition POE

Example 3: Given: T is the midpoint SU

Prove: x = 5

S	7x	T	3x + 20	J
-			20 1 20	

Statements	Reasons	
T is the midpoint SU	Given	foord A
ST = Tu	Def of midpoint	efilm High S
ST = TU	Def of congruence	and.
7x = 3x + 20	Substitution POE	arra asit al asso
4x=20	Subtraction POE	
x = 5	Division POE	a treatment of

Figure is also part of my given

Example 4: Write a justification for each step.

Given: $m\angle ABD = (3x + 5)$, $m\angle DBC = (6x - 16)$, $m\angle ABC = (8x)$

Prove: x = 11

 $m\angle ABC = 8x^{\circ}$

Statements	Reasons
$m\angle ABD = (3x + 5), m\angle DBC = (6x - 16), m\angle ABC = (8x)$	Given
$m\angle ABC = m\angle ABD + m\angle DBC$	Angle Addition Post
8x=3x+5+6x-16	Substitution POE
8x = 9x - 11	C, L.T.
Reasons -= X -	Subtraction POE
X=11	Division POE