Properties, Definitions, Postulates, \& Theorems	If	Then	Picture/Example
Algebraic Properties of Equality			
Addition POE	$\text { If } \begin{aligned} \quad a & =b, \\ & m \angle 1 \end{aligned}=m \angle 3$	Then $a+3=b+3$ $m \angle 1+m \angle 2=m \angle 3+m \angle 2$	$\begin{aligned} & \text { If } x-5=10 \text {, } \\ & \text { then } x=15 \text {. } \end{aligned}$
Subtraction POE	If $\begin{aligned} A B & =C D \\ m \angle A B C & =m \angle D E F \end{aligned}$	Then $\begin{gathered} A B-E F=C D-E F \\ m \angle A B C=m \angle 2=m \angle D E F-m \angle 2 \end{gathered}$	$\begin{aligned} & \text { If } 2 x+7=14 \\ & \text { then } 2 x=7 \end{aligned}$
Multiplication POE	If $\quad a=b$	Then $3 a=3 b$	$\begin{aligned} & \text { If } \frac{1}{2} a=10 \\ & \text { then } a=20 \end{aligned}$
Division POE	If $4 x=16$	$\begin{gathered} \text { Then } \\ x=4 \end{gathered}$	$\begin{aligned} & \text { If } 2 a=10 \\ & \text { then } a=5 \end{aligned}$
Substitution	$\text { If } \quad \begin{array}{r} a=b \\ y=3 x+5 \\ \text { and } x=2 \end{array}$	Then A and b can be substituted for each other in any equation or inequality $y=3(2)+5 \quad$ or $\quad y=11$	3.730 A thamper
Distributive POE	If $2(x+5)$	Then $2 x+10$	noltibbA slema stolutzo9
Combine Like Terms (C.L.T.)	If Like terms are on the SAME SIDE of the equation	Then You can simplify them.	$\begin{aligned} 5 x+2 x & =35 \\ 7 x & =35 \end{aligned}$
Reflexive POE	If a is a number	Then	$\begin{aligned} A B & =A B \\ m \angle 2 & =m \angle 2\end{aligned}$
Symmetric POE	$A B=C D$	Then $\quad C D=A B$	$\text { If } x=7+a,$ then $7+a=x$
Transitive POE	$\begin{aligned} & \text { If } \\ & A B=C D, C D=E F \end{aligned}$	Then $A B=E F$	art 2

Definition of Supplementary Angles Def supp 4	If 2 angles are supplementary $\angle 3$ and $\angle 4$ are supplementary	Then Their measures have a sum of 180° $m \angle 3+m \angle 4=180^{\circ}$	
Definition of Complementary Angles Def comp \&	If 2 angles are complementary $\angle 1$ and $\angle 2$ are complementary	Then Their measures have a sum of 90° $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$	
	If $\angle A B C$ is a right angle	Then $\mathrm{m} \angle A B C=$ \qquad 90°	
Right angle	If Angles are right angles	Then They are congruent (all right angles are \cong)	41 and 42 are right 4, then $41 \cong 42$
	If Two lines are perpendicular $\overline{A B} \perp \overline{C D}$	Then They form right angles $\angle C D B$ is a right angle	
Congruent Complements theorem \cong Comp thrn	If Two angles are complementary to the same angles. $\angle 1$ is complementary to $\angle 2$ $\angle 3$ is complementary to $\angle 2$	Then The two angles are congruent $\angle 1$ \qquad \cong $\angle 3$	
Congruent Supplements theorem \cong Supp thrm	If Two angles are supplementary to the same angles. $\angle 1$ is supplementary to $\angle 2$ $\angle 1$ is supplementary to $\angle 3$	Then The two angles are congruent $\angle 2 \cong \angle 3$	
$\cong \angle ' s \sup \rightarrow r$	If Two congruent angles are supplementary	Then Then each angle is a right angle	
*	(l) Perpendicular	Properties and Theorem	
\perp bisector	If A line is perpendicular to a segment at its midpoint	Then It is the perpendicular bisector	
2 intersecting lines form lin. $\text { Pr. Of } \cong \angle ' s \rightarrow \text { lines } \perp \text {. }$	If Two intersecting lines form a linear pair of congruent angles	Then The lines are perpendicular	

