
## **Right Triangles**



# $30^{\circ} - 60^{\circ} - 90^{\circ}$



$$45^{\circ}-45^{\circ}-90^{\circ}$$

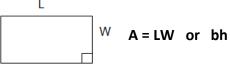



# Trig Functions SOHCAHTOA

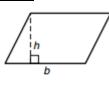
Sin 
$$x^{\circ} = \frac{Opposite \ leg}{Hypotenuse}$$
Cos  $\mathbf{x}^{\circ} = \frac{Adjacent \ leg}{Hypotenuse}$ 
Tan  $x^{\circ} = \frac{Opposite \ leg}{Adjacent \ leg}$ 

#### **Area Formulas**

## **Triangle**

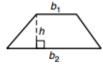



## **Square**




# $A = s^2$

# **Rectangle**




## **Parallelogram**



$$A = bh$$

## **Trapezoid**



$$A = \frac{1}{2}(b_1 + b_2)h$$

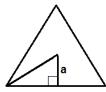
#### **Kite**



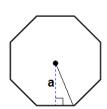
$$A = \frac{1}{2}d_1d_2$$

\*diagonals ⊥

## **Rhombus**




$$A = \frac{1}{2}d_1d_2$$


- \*4≅ sides
- \* diagonals  $oldsymbol{\perp}$  and bisect

## **Area Regular Polygon**

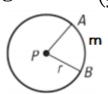




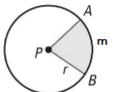




## Circles


## **Circumference:**

 $\pi d$ 


or

 $2\pi r$ 

# Arc length = $2\pi r \left(\frac{m^{\circ}}{360^{\circ}}\right)$







# <u>Area:</u>

 $\pi r^2$ 

#### Segment of a Circle









## **Converting:**

Radians to Degrees  $\underline{180}$ 

 $\pi$ 

Degrees to Radians  $\frac{\pi}{180}$